Novel pressure-sensing skin for detecting impending tissue damage during neuroendoscopy.
نویسندگان
چکیده
OBJECT Endoscopy plays an increasingly important role in minimally invasive neurosurgery. Visual feedback from the endoscope tip helps the surgeon prevent unwanted tissue contact. However, critical feedback regarding tissue deformation and trauma from proximal endoscope components is currently unavailable. A system for force feedback along the endoscope length could provide significant clinical benefit by warning of impending damage. The authors manufactured and tested a novel pressure-sensing polymer skin for use in pressure feedback during intracranial endoscopy. METHODS A photolithography process on a silicon wafer was used to produce a pattern of 80-μm-tall extrusions to serve as a positive mold for the sensor array. A thin layer of polydimethylsiloxane polymer was molded onto these features. Demolding the polymer from the wafer and sealing with another polymer layer resulted in microchannels. These microchannels were filled with a conductive liquid metal and connected to recording hardware. Spiral channel patterns were designed to create a 3 × 3 array of pressure-sensor pads, which were wrapped around a standard neuroendoscope operating sheath. Pressure readings from the compressed sensor array were translated into a color-coded graphic user interface. Calibration experiments were conducted, and the sensor was evaluated through cortical compression tests on explanted ovine brain. RESULTS The sensing endoscope operating sheath was successfully calibrated to detect and display pressures within a range consistent with normal and tissue-threatening compressions. CONCLUSIONS Force-feedback mechanisms for the neuroendoscopist are critically lacking with contemporary endoscopes. The authors designed a pressure-sensing skin technology for improved pressure feedback during endoscopy as a means for minimizing collateral tissue damage during endoscopy.
منابع مشابه
Anaesthetic Management of Patients Undergoing Intraventricular Neuro-Endoscopic Procedures
Endoscopic neurosurgery has a long history of solid progression of over a century (Enchev et al., 2008). In this period, several neuroendoscopic procedures were described, but although steady technical improvements increased the endoscopic functionality and indications, poor magnification and illumination kept neuroendoscopy difficult and unreliable, keeping it out of routine practice until the...
متن کاملStrain and Damage Sensing Property of Self-compacting Concrete Reinforced with Carbon Fibers
Present paper investigated the strain and damage sensing property on concrete cubes embedded with carbon fibers. Concrete cubes of dimension 150 mm have been casted with different concentration of carbon fibers to study the strain and damage sensing property under cyclic loading that can be further used for health monitoring as non-destructive testing (NDT) approach. All the specimens were test...
متن کاملA novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes
The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...
متن کاملForce and Thermal Sensing with a Fabric-based Skin
We present a novel fabric-based multimodal tactile sensing skin with three sensing modalities: force, actively heated temperature sensors to measure heat transfer and passive, unheated temperature sensors. In our evaluation, the skin recognized two materials during pressing and sliding tasks. Our method thermally distinguished pine wood from aluminum after detecting the contact force. With a su...
متن کاملAccuracy of ultrasound, thermography and subepidermal moisture in predicting pressure ulcers: a systematic review.
OBJECTIVE Our aims were to: establish the clinical significance of ultrasound, thermography, photography and subepidermal moisture (SEM) measurement; determine the accuracy of ultrasound, thermography, photography and SEM measurement in detecting skin/tissue damage; determine the relative accuracy of one of these assessment methods over another; make recommendations for practice pertaining to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurosurgery. Pediatrics
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2014